On Global Energy Release Rate of a Permeable Crack in a Piezoelectric Ceramic
نویسنده
چکیده
A permeable crack model is proposed to analyze crack growth in a piezoelectric ceramic. In this model, a permeable crack is modeled as a vanishing thin, finite dimension, rectangular slit with dielectric medium inside. A first-order approximation solution is derived in terms of the slit height, h0 . The main contribution of this paper is that the newly proposed permeable crack model reveals that there exists a realistic leaky mode for electrical field, which allows applied electric field passing through the dielectric medium inside a crack. By taking into account the leaky mode effect, a correct estimation of electrical and mechanical fields in front of a crack tip in a piezoelectric ceramic is obtained. To demonstrate this new finding, a closed-form solution is obtained for a mode III permeable crack under both mechanical as well electrical loads. Both local and global energy release rates are calculated based on the permeable crack solution obtained. It is found that the global energy release rate derived for a permeable crack is in a broad agreement with some known experimental observations. It may be served as a fracture criterion for piezoelectric materials. This contribution reconciles the outstanding discrepancy between experimental observation and theoretical analysis on crack growth problem in piezoelectric materials. @DOI: 10.1115/1.1544539#
منابع مشابه
On saturation-strip model of a permeable crack in a piezoelectric ceramic
The saturation-strip model for piezoelectric crack is re-examined in a permeable environment to analyze fracture toughness of a piezoelectric ceramic. In this study, a permeable crack is modeled as a vanishing thin but finite rectangular slit with surface charge deposited along crack surfaces. This permeable saturation crack model reveals that there exists a possible leaky mode for electrical f...
متن کاملCracked piezoelectric layer bounded between two orthotropic half-planes
This paper deals with the behavior of anti-plane shear crack in a piezoelectric layer bounded between two orthotropic half-planes within the framework of linear electroelasticity. The crack surfaces are assumed to be permeable or impermeable. The analysis is based on the stress fields caused by Volterra-type screw dislocation in the medium. Fourier transforms are used to reduce the dislocation ...
متن کاملThe energy release rate and the J - integral of an electrically insulated crack in a piezoelectric material
In this work, we examine the energy release rate and the J-integral of an electrically insulated crack in a piezoelectric solid under remotely uniform electrical/mechanical loads. We model the crack as a slender elliptical flaw to take into account the electric field inside the crack and obtain the exact and explicit solution. The analytic results show that the energy release rate, in general, ...
متن کاملDislocation Nucleation at Metal-ceramic Interfaces
Ab~act-The ductile vs brittle behaviour of metal-ceramic interfaces is discussed within an atomistic framework, in which the mechanical response of an interfucial crack is assumed to be ultimately controlled by the competition between atomic decohesion and dislocation nucleation ahead of the crack tip. As in later versions of the Rice-Thomson model, this competition may be evaluated in terms of...
متن کاملtt . - ) q Crack Branching and Deflection in Piezoelectric Materials
The problem of crack branching and deflection in bi-material system is considered in this paper. The combinations may be piezoelectric-piezoelectric, or piezoelectric and non-piezoelectric. Based on Stroh's formulation for anisotropic material, Green's functions for various bi-material combinations are presented within the framework of two-dimensional electro-elasticity, allowing the crack prob...
متن کامل